using SpiDy using NPZ using DataFrames using CSV using ProgressMeter using Random using Statistics using LinearAlgebra using Plots ######################## ######################## Δt = 0.1 N = 10_000 tspan = (0., N*Δt) saveat = (0:1:N)*Δt α = 10. ω0 = 7. Γ = 5. J = LorentzianSD(α, ω0, Γ) # coloring the noise matrix = AnisoCoupling([-sin(π/4) 0. 0. # coupling to the environment 0. 0. 0. cos(π/4) 0. 0.]); T = 1. noise = ClassicalNoise(T); navg = 6 # number of stochastic realizations nspin = 4 # number of spins s0 = zeros(3*nspin) for i in 1:nspin ϵ = 0.1 s0tmp = [ϵ*rand(), ϵ*rand(), -1] s0[1+(i-1)*3:3+(i-1)*3] = s0tmp./norm(s0tmp) end J0 = 1. JH = Nchain(nspin, J0) ######################## ######################## println("Starting...") progress = Progress(navg); sols = zeros(navg, length(saveat), 3*nspin) Threads.@threads for i in 1:navg bfields = [bfield(N, Δt, J, noise), bfield(N, Δt, J, noise), bfield(N, Δt, J, noise)]; sol = diffeqsolver(s0, tspan, J, bfields, matrix; JH=JH, saveat=saveat); sols[i, :, :] = transpose(sol[:, :]) next!(progress) end solavg = mean(sols, dims=1)[1, :, :]; ######################## ######################## ### Save data NPZ ### npzwrite("./outputs/dynamics.npz", Dict("t" => saveat, "S" => solavg)) ### Save data CSV ### dataframe = DataFrame(t = saveat, Sx = solavg[:, 1], Sy = solavg[:, 2], Sz = solavg[:, 3]) CSV.write("./outputs/dynamics.csv", dataframe) ### Plots ### plot(saveat, solavg[:, 1], xlabel="t", ylabel="S_x") savefig("./outputs/sx.pdf") plot(saveat, solavg[:, 2], xlabel="t", ylabel="S_y") savefig("./outputs/sy.pdf") plot(saveat, solavg[:, 3], xlabel="t", ylabel="S_z") savefig("./outputs/sz.pdf")