Projection Notebook
This commit is contained in:
parent
fc20e4913d
commit
dafd652cbb
4 changed files with 2199 additions and 0 deletions
6
runs/.ipynb_checkpoints/Projections-checkpoint.ipynb
Normal file
6
runs/.ipynb_checkpoints/Projections-checkpoint.ipynb
Normal file
|
|
@ -0,0 +1,6 @@
|
|||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
76
runs/.ipynb_checkpoints/run_dynamics-checkpoint.jl
Normal file
76
runs/.ipynb_checkpoints/run_dynamics-checkpoint.jl
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
using SpiDy
|
||||
using NPZ
|
||||
using DataFrames
|
||||
using CSV
|
||||
using ProgressMeter
|
||||
using Random
|
||||
using Statistics
|
||||
using LinearAlgebra
|
||||
using Plots
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
Δt = 0.1
|
||||
N = 10_000
|
||||
tspan = (0., N*Δt)
|
||||
saveat = (0:1:N)*Δt
|
||||
α = 10.
|
||||
ω0 = 7.
|
||||
Γ = 5.
|
||||
J = LorentzianSD(α, ω0, Γ) # coloring the noise
|
||||
matrix = AnisoCoupling([-sin(π/4) 0. 0. # coupling to the environment
|
||||
0. 0. 0.
|
||||
cos(π/4) 0. 0.]);
|
||||
T = 1.
|
||||
noise = ClassicalNoise(T);
|
||||
navg = 6 # number of stochastic realizations
|
||||
nspin = 4 # number of spins
|
||||
s0 = zeros(3*nspin)
|
||||
for i in 1:nspin
|
||||
ϵ = 0.1
|
||||
s0tmp = [ϵ*rand(), ϵ*rand(), -1]
|
||||
s0[1+(i-1)*3:3+(i-1)*3] = s0tmp./norm(s0tmp)
|
||||
end
|
||||
J0 = 1.
|
||||
JH = Nchain(nspin, J0)
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
println("Starting...")
|
||||
progress = Progress(navg);
|
||||
sols = zeros(navg, length(saveat), 3*nspin)
|
||||
Threads.@threads for i in 1:navg
|
||||
bfields = [bfield(N, Δt, J, noise),
|
||||
bfield(N, Δt, J, noise),
|
||||
bfield(N, Δt, J, noise)];
|
||||
sol = diffeqsolver(s0, tspan, J, bfields, matrix; JH=JH, saveat=saveat);
|
||||
sols[i, :, :] = transpose(sol[:, :])
|
||||
next!(progress)
|
||||
end
|
||||
solavg = mean(sols, dims=1)[1, :, :];
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
### Save data NPZ ###
|
||||
npzwrite("./outputs/dynamics.npz", Dict("t" => saveat,
|
||||
"S" => solavg))
|
||||
|
||||
### Save data CSV ###
|
||||
dataframe = DataFrame(t = saveat,
|
||||
Sx = solavg[:, 1],
|
||||
Sy = solavg[:, 2],
|
||||
Sz = solavg[:, 3])
|
||||
CSV.write("./outputs/dynamics.csv", dataframe)
|
||||
|
||||
### Plots ###
|
||||
plot(saveat, solavg[:, 1], xlabel="t", ylabel="S_x")
|
||||
savefig("./outputs/sx.pdf")
|
||||
|
||||
plot(saveat, solavg[:, 2], xlabel="t", ylabel="S_y")
|
||||
savefig("./outputs/sy.pdf")
|
||||
|
||||
plot(saveat, solavg[:, 3], xlabel="t", ylabel="S_z")
|
||||
savefig("./outputs/sz.pdf")
|
||||
2041
runs/Projections.ipynb
Normal file
2041
runs/Projections.ipynb
Normal file
File diff suppressed because one or more lines are too long
76
runs/run_dynamics.jl
Normal file
76
runs/run_dynamics.jl
Normal file
|
|
@ -0,0 +1,76 @@
|
|||
using SpiDy
|
||||
using NPZ
|
||||
using DataFrames
|
||||
using CSV
|
||||
using ProgressMeter
|
||||
using Random
|
||||
using Statistics
|
||||
using LinearAlgebra
|
||||
using Plots
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
Δt = 0.1
|
||||
N = 10_000
|
||||
tspan = (0., N*Δt)
|
||||
saveat = (0:1:N)*Δt
|
||||
α = 10.
|
||||
ω0 = 7.
|
||||
Γ = 5.
|
||||
J = LorentzianSD(α, ω0, Γ) # coloring the noise
|
||||
matrix = AnisoCoupling([-sin(π/4) 0. 0. # coupling to the environment
|
||||
0. 0. 0.
|
||||
cos(π/4) 0. 0.]);
|
||||
T = 1.
|
||||
noise = ClassicalNoise(T);
|
||||
navg = 6 # number of stochastic realizations
|
||||
nspin = 4 # number of spins
|
||||
s0 = zeros(3*nspin)
|
||||
for i in 1:nspin
|
||||
ϵ = 0.1
|
||||
s0tmp = [ϵ*rand(), ϵ*rand(), -1]
|
||||
s0[1+(i-1)*3:3+(i-1)*3] = s0tmp./norm(s0tmp)
|
||||
end
|
||||
J0 = 1.
|
||||
JH = Nchain(nspin, J0)
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
println("Starting...")
|
||||
progress = Progress(navg);
|
||||
sols = zeros(navg, length(saveat), 3*nspin)
|
||||
Threads.@threads for i in 1:navg
|
||||
bfields = [bfield(N, Δt, J, noise),
|
||||
bfield(N, Δt, J, noise),
|
||||
bfield(N, Δt, J, noise)];
|
||||
sol = diffeqsolver(s0, tspan, J, bfields, matrix; JH=JH, saveat=saveat);
|
||||
sols[i, :, :] = transpose(sol[:, :])
|
||||
next!(progress)
|
||||
end
|
||||
solavg = mean(sols, dims=1)[1, :, :];
|
||||
|
||||
########################
|
||||
########################
|
||||
|
||||
### Save data NPZ ###
|
||||
npzwrite("./outputs/dynamics.npz", Dict("t" => saveat,
|
||||
"S" => solavg))
|
||||
|
||||
### Save data CSV ###
|
||||
dataframe = DataFrame(t = saveat,
|
||||
Sx = solavg[:, 1],
|
||||
Sy = solavg[:, 2],
|
||||
Sz = solavg[:, 3])
|
||||
CSV.write("./outputs/dynamics.csv", dataframe)
|
||||
|
||||
### Plots ###
|
||||
plot(saveat, solavg[:, 1], xlabel="t", ylabel="S_x")
|
||||
savefig("./outputs/sx.pdf")
|
||||
|
||||
plot(saveat, solavg[:, 2], xlabel="t", ylabel="S_y")
|
||||
savefig("./outputs/sy.pdf")
|
||||
|
||||
plot(saveat, solavg[:, 3], xlabel="t", ylabel="S_z")
|
||||
savefig("./outputs/sz.pdf")
|
||||
Loading…
Add table
Add a link
Reference in a new issue